Scanning hard x-ray differential phase contrast imaging with a double wedge absorber.
نویسندگان
چکیده
Two-directional differential phase contrast images were measured using an x-ray microbeam and a double wedge absorber. The wedge absorber converts the displacement of an x-ray beam that is refracted by an object into change of x-ray intensity. The double wedge absorber made it possible to detect values of two-directional refraction angle with microrad sensitivity simultaneously. By Fourier integration of two-directional phase gradients calculated from the refraction angle instead of line integration of one-directional phase gradients, we obtained a quantitative phase map without artifacts even when only a part of the boundaries of the object were in the field of view. One of the characteristics of this technique is flexibility in a sensitivity of the phase gradient. By changing of shape or material of the wedge absorber, it is comparatively easy to control the detection limit of the refraction angle.
منابع مشابه
Fast Differential Phase-Contrast Imaging and Total Fluorescence Yield Mapping in a Hard X-ray Fluorescence Microprobe
We have incorporated differential phase-contrast (DPC) detection in a hard x-ray fluorescence microprobe at the Advanced Photon Source. We report a straightforward implementation of unidirectional DPC and demonstrate that it is highly advantageous for imaging low-Z specimens with hard x-rays (10keV). Phase-contrast imaging of a specimen can be used to acquire fast overview images of samples tha...
متن کاملPhase-contrast imaging with synchrotron hard X-ray of micro lesions of the cartilage of the femoral head in rabbits.
BACKGROUND To observe micro lesions on the cartilage of the rabbit femoral head using phase-contrast imaging with synchrotron hard X-ray and to prove that this method can be useful in the study of the degeneration of cartilage. METHODS New Zealand white rabbits were used in a micro lesion model of rabbit femoral head cartilage. Bilateral femoral heads were excised from rabbits, and micro lesi...
متن کاملZernike phase contrast in scanning microscopy with X-rays.
Scanning X-ray microscopy focuses radiation to a small spot and probes the sample by raster scanning. It allows information to be obtained from secondary signals such as X-ray fluorescence, which yields an elemental mapping of the sample not available in full-field imaging. The analysis and interpretation from these secondary signals can be considerably enhanced if these data are coupled with s...
متن کاملCombined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for sub-cellular metal quantification.
Hard X-ray fluorescence microscopy and magnified phase contrast imaging are combined to obtain quantitative maps of the projected metal concentration in whole cells. The experiments were performed on freeze dried cells at the nano-imaging station ID22NI of the European Synchrotron Radiation Facility (ESRF). X-ray fluorescence analysis gives the areal mass of most major, minor and trace elements...
متن کاملPhase contrast X - ray imaging
In the last decade X-ray imaging based on phase contrast greatly advanced thanks to the use of unmonochromatic synchrotron hard X-rays. The recent advances are going beyond microradiology and microtomography to reach nanometre scale. This paper reviews basic theory and selected applications to biomedical and materials sciences. The forthcoming improvements in phase contrast X-ray imaging will l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 80 3 شماره
صفحات -
تاریخ انتشار 2009